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1
HANDLING OF BINARY TRANSLATED SELF
MODIFYING CODE AND CROSS
MODIFYING CODE

TECHNICAL FIELD

The field of the invention is handling of binary translated
self modifying code and cross modifying code.

BACKGROUND

A processor core may be designed to execute code written
in a particular coding language. In order to have a program
executed by a particular core, program code may need to be
translated from a first coding language that is incompatible
with the particular core to a second coding language that is
compatible with the particular core, known as binary transla-
tion.

Self modifying code (SMC) refers to code that becomes
modified during execution, e.g., one or more instructions of
the SMC upon execution modify other instructions of the
SMC. Cross modifying code (XMC) refers to first code that is
executable on a first processor core and that when executed
causes modifications to second code that is executable on a
second processor core. SMC or XMC may be partially trans-
lated or entirely translated prior to execution. Translation of
several instructions prior to their execution may introduce
anomalies in the translated code, as compared with transla-
tion and execution of each instruction prior to advancement to
the next instruction. The anomalies in the translated code can
result in mistakes in output.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a processor that includes a
plurality of processor cores in accordance with an embodi-
ment of the present invention.

FIG. 2 includes block diagrams of a portion of a memory
storing code in accordance with embodiments of the present
invention.

FIG. 3 is a block diagram of a translation indicator agent
(XTBA), in accordance with an embodiment of the present
invention.

FIG. 4 is a block diagram of cache memories associated
with a processor in accordance with an embodiment of the
present invention.

FIG. 5 is a flow diagram of a method of processing self
modified code (SMC) in accordance with an embodiment of
the present invention.

FIG. 6 is a flow diagram of a method of processing cross
modified code (XMC) in accordance with an embodiment of
the present invention.

FIG. 7 is a block diagram of a processor core in accordance
with one embodiment of the present invention.

FIG. 8 is ablock diagram of a processor in accordance with
an embodiment of the present invention.

FIG. 9 is a block diagram of a multi-domain processor in
accordance with another embodiment of the present inven-
tion.

FIG. 10 is a block diagram of an embodiment of a proces-
sor including multiple cores.

FIG. 11 is a block diagram of a system in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments, methods and apparatus are pro-
vided to execute translated code that includes SMC or XMC.
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In one embodiment, a processor includes a core to execute a
translated first instruction that is translated from a first
instruction stored in a page of a memory. The core also
includes a translation indication agent (XTBA), e.g., a dedi-
cated cache memory to store a first translation indicator that is
to indicate that whether contents of the page have been modi-
fied after translation of the first instruction is complete.

Referring now to FIG. 1, shown is a block diagram of a
processor 100 that includes a plurality of cores in accordance
with an embodiment of the present invention. In an embodi-
ment, the processor 100 may include cores 102, 120, 130, and
140. The core 102 may include an execution unit 104 to
execute instructions that may be stored in a cache memory or
that may be retrieved from a system memory 160 (e.g., a
dynamic random access memory (DRAM)), an XTBA 106 to
store one or more translation indicators, a first level data
cache (D$) 108, a second (middle) level data cache (MLC)
110, and a third (last) data level cache (LLLC) 112. Each of the
cores 120,130, and 140 may have a corresponding X TBA and
a corresponding first level cache, second level cache, and
third level cache.

Each core 102,120,130, 140, may be coupled to a physical
map cache (PM$) 150 that is to store a plurality of translation
indicators. The PM$ 150 may include a portion of entries
copied from a physical map (PhysMap) 170 of translation
indicators, each translation indicator in the PhysMap 170
associated with a corresponding page of a plurality of pages
180 in the memory 160. For example, the translation indicator
associated with page A and stored in the PhysMap 170 may
indicate whether a first instruction stored in page A has been
translated to a first translated instruction, e.g. from a first
coding language to a second coding language. The first trans-
lated instruction may be stored in another page of the system
memory 160.

In operation, the XTBA 106 may store the first translation
indicator corresponding to page A and associated with the
first translated instruction. The first translation indicator may
have been retrieved from, e.g., the PM$ 150, or from the
PhysMap 170, based on, e.g., tag information of the first
translated instruction. In an example, the first translation indi-
cator in the XTBA 106 may have a value of 1, and indicates
that translation of the first instruction has occurred.

If page A is modified subsequent to translation of the first
instruction to the first translated instruction, the value of the
translation indicator may be updated from 1 to O to indicate
that page A has been modified subsequent to translation of the
first instruction. If page A has been modified subsequent to
the translation, the translated first instruction may be deemed
stale, e.g., the first translated instruction is treated as if it is no
longer a valid instruction. While it is possible that the first
instruction has not been altered when page A is modified, in
this embodiment the granularity of the translation indicator
map is one translation indicator per page. Hence, a modifica-
tion to page A is treated as if the first instruction has been
modified. In response to identification of the first translated
instruction as stale, the core may abort execution of the first
translated instruction.

During execution of the first translated instruction, the
XTBA 106 is configured to monitor the value of the transla-
tion indicator associated with page A and stored in the Phys-
Map 170. If the first translation indicator in the PhysMap 170
is updated from a value of 1 to a value of O as a result of, e.g.,
execution of a STORE instruction to an address within page A
at any time between a start of execution of the translated first
instruction and completion of the execution (“commit”), the
execution of the first translated instruction may be aborted.
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The XTBA 106 may be physically tagged to enable snoop-
ing of updates to the PhysMap 170. An update to the PhysMap
170 can result in generation of snoops to all XTBAs in the
system 100. The generated snoops can act to alert each of the
XTBAs that the first translated instruction is stale and that
execution of the first translated instruction is to be halted in
each core that is executing the first translated instruction.

Each cache line of each of the data caches 108, 110, and
112 in the core 102 is to store data (and similarly for the data
caches in cores 120, 130, and 140), e.g., operands retrieved
from one or more pages of the memory 160. In an embodi-
ment, each cache line can include a translation indicator that
is added to atag portion of the cache line, depicted as an added
column 114, 116, and 118 in each of the cache memories 108,
110, and 112, respectively. The translation indicator within a
cache line may be copied from the PhysMap 170 or from the
PMS 150. The translation indicator of a given cache line may
be associated with a particular page in memory 160 from
which data in the cache line has been loaded.

In operation, an operand may be retrieved from page A of
the memory 160 and may be stored in a first cache line of the
cache memory 108 within the core 102. Because source page
A includes code that has been translated and page A has not
been subsequently altered, the translation indicator associ-
ated with page A has a value indicative of translation (e.g.,
value of 1). If a translated instruction to be executed by the
core 102 includes a STORE that is to be executed on the
operand in the first cache line, the translation indicator value
in the cache line indicates to the core 102 that execution of the
STORE would result in a conflict, e.g., modification of a
source page of a translated instruction. Consequently, a fault
may be generated and execution control may be transferred to
a handler that halts the STORE from execution. All translated
instructions originating from code stored in page A may be
invalidated. After execution of the STORE on the operand via
the handler, subsequent program instructions may be
re-translated or otherwise handled.

Referring now to FIG. 2, shown are block diagrams of two
embodiments of a memory portion of a memory storing code
and data in accordance with embodiments of the present
invention. The memory portion may be included in the system
memory 160 of FIG. 1.

In one embodiment, the memory portion 210 includes data
pages C and D 212, code page A 214, code page B 216, line
220 to store translated instruction A1, line 222 to store trans-
lated instruction B1, and translation indicator physical map
(PhysMap) 226. Page A 214 may include first self modifying
code (SMC) that is translated to translated code that includes
the translated instruction Al and stored in line 220. Page B
216 may include second SMC that may be translated to trans-
lated instruction B1 and stored in line 222. The PhysMap 226
is to store translation indicator values of pages including data
pages C and D 212 and code pages A 214 and B 216. The data
pages 212 each have translation indicator values that indicate
that no translation of contents of the data pages 212 has
occurred, and the code pages 214 and 216 each have corre-
sponding translation indicator values to indicate that instruc-
tions in pages 214 and 216 have been translated. In one
example, a translation indicator value of 1 is associated with
translation of an instruction, and a value of 0 is associated
with no translation. Other embodiments may use different
values to indicate translation or no translation of an instruc-
tion.

In operation, the translated instruction Al in line 220 may
include a STORE instruction (e.g., amicro-op (pop)) thatisto
be executed on an operand, e.g., store a register contents to an
address in page A 214. Because execution of the STORE
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4

instruction would change contents of page A 214, the core to
execute the STORE may generate a fault prior to the execu-
tion of the STORE based on the translation indicator associ-
ated with the operand, and execution control may be trans-
ferred to a handler to update or invalidate the translated
instruction A1. That is, because the translation indicator in the
tag portion of the cache line can indicate to the core that code
within page A has been translated, executing the STORE
would change the source page of the translated instruction.
The fault may trigger an update in PhysMap 170 (e.g., via a
WRITE to PhysMap 170) of the translation indicator associ-
ated with code page A 214, e.g., from a value of 1 to a value
of 0 to indicate that the translated instruction Al is stale, and
that a re-translation is to occur after the STORE is executed.

In another embodiment, a memory portion 230 includes
data pages C and D 232, code page A 234 and code page B
236, translated code lines 238 and 240, and translation indi-
cator physical map PhysMap 236. Lines 238 and 240 may
store translated instructions Al and B1, respectively, which
may have been translated from cross modifying code (XMC)
in code page A 234 and page B 236, respectively. The Phys-
Map 236 is to store translation indicator values of pages of the
memory 230 including translation indicator values of code
pages A 234 and B 236, each with an associated translation
indicator to indicate that code in pages 234 and 236 have been
translated. The data pages 232 each have associated transla-
tion indicator values of 0 to indicate no translation of contents
of'the data pages 232.

In operation, a first core (core 0) may execute the translated
instruction Al and a second core (core 1) may execute the
translated instruction B1. The translated instruction A1 may
include a STORE instruction to code page B 236 that upon
execution by core 0, would modify contents of code page B
236. During execution of translated instruction Al, core 0
may detect a conflict based on a T-value of 1 associated with
code page B 236 (to indicate that code stored in code page B
has been translated), which may cause core O to generate a
fault. Control may be transferred to a handler to update the
PhysMap 236 (e.g., via execution of a WRITE), to update the
translation indicator associated with page B, and also to
update a cache line translation indicator in a cache line con-
taining the operand of the STORE instruction.

The update to the PhysMap 236 may cause snoops to be
generated to all XTBAs in the system, including to an XTBA
in a core 1 that is executing the translated instruction B1.
Because the translated instruction B1 is being executed, the
XTBA of core 1 may store a translation indicator value asso-
ciated with code page B. Update of the translation indicator
value in the XTBA of core 1 from a first value to a second
value can indicate to the core 1 that translated instruction B1
is stale, causing execution of the translated instruction B1 to
abort.

In another embodiment (not shown), an Input/Output (I/O)
unit may modify the code page A 234 via Direct Memory
Access (DMA). Modification of the code page A can trigger
a WRITE to the PhysMap 236 to update the associated trans-
lation indicator value associated with page A 234 that indi-
cates that code in page A has been modified subsequent to
translation of an instruction in page A. The updated value of
the associated translation indicator can generate snoops to all
XTBAs of the system, resulting in one or more faults associ-
ated with execution of translated instruction Al. Conse-
quently, the execution of the translated instruction A1 may be
aborted in each core executing the translated instruction Al.

Referring now to FIG. 3, shown is a block diagram depict-
ing a translation indicator agent (XTBA) 300 in accordance
with an embodiment of the present invention. The XTBA 300
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may include a plurality of storage bits including storage bit
302. Each storage bit is configured to store a translation
indicator value associated with a currently executing instruc-
tion or recently executed instruction, and each translation
indicator value is also associated with a corresponding page
of'a memory from which the currently executing instruction
was translated. A storage bit of the XTBA 300 may be loaded
from, e.g., a translation indicator cache such as PM$ 150 of
FIG. 1, or may be loaded from a physical map of translation
indicators associated with pages of the memory, such as Phys-
Map 170 of FIG. 1.

In an embodiment, XTBA 300 can act to monitor a status of
a translated instruction in execution. For example, upon start
of execution of translated instruction Al, a translation indi-
cator associated with page A (containing the corresponding
untranslated instruction) in the XTBA 300 indicates that the
translated instruction A1 is valid. The XTBA 300 may moni-
tor the value of the translation indicator associated with the
page A and stored in the PhysMap. If the value of the trans-
lation indicator associated with the page A changes during
execution of the translated instruction A1, execution of the
translated instruction A1 may be aborted and may be sent to a
handler to complete execution.

Additionally, the handler may generate snoops to all other
XTBAs of the system, such as to each of the other XTBAs in
the processor 100 of FIG. 1. Snoops to each of the other
XTBAs in the system may result in update of the respective
translation indicator corresponding to the translated instruc-
tion that is now stale. The snoops may result in aborting
execution of the translated instruction in other cores and each
core may send the translated instruction to a respective han-
dler to complete execution.

Referring now to FIG. 4, shown is a block diagram depict-
ing a set of data caches 400 associated with a processor, such
as the processor 110 of FIG. 1. The set of data caches 400
includes a first level data cache 410, a second level data cache
420, and a third level data cache 430.

Each data cache may include a plurality of cache lines.
Each cache line may include a data storage portion such as
data storage portions 412, 422, and 432, each to store an
operand, and a tag portion such as tag portions 414, 424, and
434. Each tag portion may include a corresponding stored
translation indicator, such as translation indicators 416, 426,
and 436. Each translation indicator in the tag portion may
correspond to a translation indicator of a source page in
memory from which the operand has been copied and placed
in the data storage portion.

In one embodiment, a STORE instruction is to execute on
an operand of a cache line whose translation indicator has a
value that indicates the STORE is directed to the source page
containing code that has been translated. Hence, execution of
the STORE instruction would modify the contents of the
source page. A processor to execute the STORE instruction
may detect a conflict by reading the translation indicator
value in the cache line, and may reset the translation indicator
send the STORE instruction to a handler to resolve the
impending conflict. Thus, the translation indicator stored in
the cache line can serve as an indicator of a conflict, e.g.,
modification of a source code page containing instructions
that have been translated.

Detection of the impending conflict associated with the
STORE instruction can cause generation of an update of the
corresponding translation indicator in the PhysMap from a
first value to a second value. Update of the PhysMap can
cause generation of snoops to all XTBAs of the system. Each
snoop updates an associated translation indicator of a trans-
lated instruction in the XTBA of a core executing the trans-
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lated instruction, to indicate that the translated instruction is
stale. The snoops may also result in updates to the translation
indicator values of cache lines associated with the source
code page, e.g., cache lines whose contents are loaded from
the source code page.

For example, in an embodiment, upon commencement of
execution of first translated instruction at a processor an
XTBA of'the processor is to monitor the translation indicator
of the source code page. Upon an indication that the transla-
tion indicator has been updated indicating modification of the
source code page, the XTBA entry is updated, causing a fault
that stops execution of the corresponding instruction that is
now stale. Additionally, snoops can be generated to each of
the caches in response to the indication of the updated trans-
lation indicator, which result in updates to each translation
indicator in cache lines whose stored data is loaded from the
source page. An updated translation indicator value in a par-
ticular cache line can indicate that the first translated instruc-
tion is not to be executed on the particular cache line, but
instead is to be transferred to a handler to complete execution.

Referring now to FIG. 5, shown is a method 500 for
responding to a conflict arising from execution of self modi-
fying code. In an embodiment, the method 500 can be per-
formed by a core, such as the processor 102 of FIG. 1.

Beginning with block 510, code stored in page A of a
memory is translated, e.g., by binary translation from a first
coding language to a second coding language. Continuing to
block 520, a core 0 executes a translated instruction Al,
including a STORE to page A. Moving to block 530, core 0
detects a conflict from a translation indicator value that indi-
cates an intention to modify data stored in page A after trans-
lation of an instruction of page A, e.g., by executing the
STORE to page A. Continuing to block 535, core O generates
a fault in response to detection of the conflict. Proceeding to
block 540, core 0 transfers control to a handler that updates a
physical map (PhysMap) of the corresponding translation
indicators and performs a cache line update of translation
indicators in cache lines associated with core 0. Continuing to
block 550, the update of the PhysMap is detected by an XTBA
of core 0, causing a snoop to be generated to each XTBA in
the system that updates the stored translation indicator value
in each XTBA corresponding to a currently executing trans-
lated instruction. The updated value of the translated instruc-
tion indicates that the currently executing instruction is stale.
Translation indicator values of cache line entries containing
operands copied from page A of cache memories associated
with other cores are also updated. The method 500 ends at
block 560.

The method of FIG. 5 can be performed by hardware,
software, firmware, or combinations thereof. While shown at
ahigh level in the embodiment of FIG. 5, it is to be understood
that the scope of the present invention is not so limited.

Referring now to FIG. 6, shown is a method 600 for
responding to a conflict arising from execution of cross modi-
fying code. Beginning at block 602, code stored in page A of
a memory, such as a DRAM, is translated (binary translation)
to code Al. The translation may be accomplished by a core in
a system such as the system shown in FIG. 1, or may be
translated by a separate binary translation processor. Con-
tinuing to block 604, code stored in page B of the memory is
translated to code B1. Advancing to block 606, a core 0 begins
execution of the translated instruction Al, including a
STORE to page B of the memory. Moving to block 608, the
core 0 detects, from the translation indicator value, a conflict
due to an attempt to store data to page B that includes code
that has been translated. Proceeding to block 610, core 0
generates a fault in response to detection of the conflict.
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Continuing to block 612, core O transfers control to a handler
that is to update a physical map of translation indicators (e.g.,
PhysMap 170 of FIG. 1) and is also to update cache line
translation indicator values.

Advancing to block 614, the update of the PhysMap gen-
erates snoops to all XTBAs in the system. Moving to block
616, the XTBA in core 1 receives a snoop hit, which generates
a fault in core 1. Proceeding to block 618, core 1 aborts
execution of the translated instruction B1 in response to the
corresponding updated translation indicator value in the asso-
ciated XTBA. The method ends at block 620.

The method of FIG. 6 can be performed by hardware,
software, firmware, or combinations thereof. While shown at
ahigh level in the embodiment of FIG. 6, it is to be understood
that the scope of the present invention is not so limited.

Embodiments can be implemented in many different sys-
tems. For example, embodiments can be realized in a proces-
sor such as a multicore processor. Referring now to FIG. 7,
shown is a block diagram of a processor core in accordance
with one embodiment of the present invention. As shown in
FIG. 7, core 700 may be one core of a multicore processor,
and is shown as a multi-stage pipelined out-of-order proces-
sor. Processor core 700 is shown with a relatively simplified
view in FIG. 7 to illustrate various features used in connection
with data error correction in accordance with an embodiment
of the present invention.

As shown in FIG. 7, core 700 includes front end units 710,
which may be used to fetch instructions to be executed and
prepare them for use later in the processor. For example, front
end units 710 may include a fetch unit 701, an instruction
cache 703, and an instruction decoder 705. In some imple-
mentations, front end units 710 may further include a trace
cache, along with microcode storage as well as a micro-
operation storage. Fetch unit 701 may fetch macro-instruc-
tions, e.g., from memory or instruction cache 703, and feed
them to instruction decoder 705 to decode them into primi-
tives, i.e., micro-operations for execution by the processor.

Coupled between front end units 710 and execution units
720 is an out-of-order (OOO) engine 715 that may be used to
receive the micro-instructions and prepare them for execu-
tion. More specifically OOO engine 715 may include various
buffers to re-order micro-instruction flow and allocate vari-
ous resources needed for execution, as well as to provide
renaming of logical registers onto storage locations within
various register files such as register file 730 and extended
register file 735 such as by using renaming logic of the engine.
Register file 730 may include separate register files for integer
and floating point operations. Extended register file 735 may
provide storage for vector-sized units, e.g., 256 or 512 bits per
register.

Various resources may be present in execution units 720,
including, for example, various integer, floating point, and
single instruction multiple data (SIMD) logic units, among
other specialized hardware. For example, such execution
units may include one or more arithmetic logic units (ALUs)
722. Of course other execution units such as multiply-accu-
mulate units and so forth may further be present.

In some embodiments, one or more of the execution units
720 may include an XTBA 724 to cache translation indicator
values, as described herein. Each of the execution units 720
may include one or more data caches (not shown) that may
store a plurality of entries and each entry may include meta-
data that may include a translation indicator, as described
herein.

Results of the execution units 720 may be provided to a
retirement logic, which may be implemented within a
memory subsystem 760 of the processor. Various processor
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structures including execution units and front end logic, for
example, may be coupled to a memory subsystem 760. This
memory subsystem may provide an interface between pro-
cessor structures and further portions of a memory hierarchy,
e.g.,anonor off-chip cache and a system memory. As seen the
subsystem has various components including a memory order
buffer (MOB) 740. More specifically, MOB 740 may include
various arrays and logic to receive information associated
with instructions that are executed. This information is then
examined by MOB 740 to determine whether the instructions
can be validly retired and result data committed to the archi-
tectural state of the processor, or whether one or more excep-
tions occurred that prevent a proper retirement of the instruc-
tions. Of course, MOB 740 may handle other operations
associated with retirement.

As shown in FIG. 7, MOB 740 is coupled to a cache 750
which, in one embodiment may be a low level cache (e.g., an
L1 cache). Memory subsystem 760 also may include an inte-
grated memory controller 770 to provide for communication
with a system memory (not shown for ease of illustration in
FIG. 7). Memory subsystem 760 may further include a
memory execution unit (MEU) 775 that handles various
operations to initiate memory requests and handle return of
data from memory. Further, while not shown understand that
other structures such as buffers, schedulers and so forth may
be present in the MEU 775.

From memory subsystem 760, data communication may
occur with higher level caches, system memory and so forth.
While shown with this high level in the embodiment of FIG.
7, understand the scope of the present invention is not limited
in this regard. For example, while the implementation of FIG.
7 is with regard to an out-of-order machine such as of a
so-called x86 instruction set architecture (ISA) architecture,
the scope of the present invention is not limited in this regard.
That is, other embodiments may be implemented in an in-
order processor, a reduced instruction set computing (RISC)
processor such as an ARM-based processor, or a processor of
another type of ISA that can emulate instructions and opera-
tions of a different ISA via an emulation engine and associ-
ated logic circuitry.

That is, in other embodiments, a processor architecture
may include emulation features such that the processor can
execute instructions of a first ISA, referred to as a source ISA,
where the architecture is according to a second ISA, referred
to as a target ISA. In general, software, including both the OS
and application programs, is compiled to the source ISA, and
hardware implements the target ISA designed specifically for
a given hardware implementation with special performance
and/or energy efficiency features.

Referring now to FIG. 8, shown is a block diagram of a
processor in accordance with an embodiment of the present
invention. As shown in FIG. 8, processor 800 may be a mul-
ticore processor including a plurality of cores 810,-810,, in a
core domain 810. One or more of the cores 810,-810, may
include an XTBA (not shown), as described herein, and a data
cache in which each cache line may include metadata that
may include a translation indictor, as described herein. As
further shown in FIG. 8, one or more graphics processing
units (GPUs) 812,-812, may be present in a graphics domain
812. Each of these independent graphics engines also may be
configured to operate at independent voltage and/or fre-
quency or may be controlled together as a single domain.
These various compute elements may be coupled via an inter-
connect 815 to a system agent or uncore 820 that includes
various components. As seen, the uncore 820 may include a
shared cache 830 which may be a last level cache. The shared
cache 830 may include a plurality of entries, and each cache
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entry may include metadata that may include a translation
indicator associated with data stored in the cache entry, as
described herein and a data cache. One or more of the caches
may store a plurality of entries and each entry may include
metadata that may include a translation indicator, as
described herein. The uncore may also include a physical map
cache (PMS$), as described herein.

With further reference to FIG. 8, processor 800 may com-
municate with a system memory 860, e.g., via a memory bus.
In addition, by interfaces 850, connection can be made to
various off-chip components such as peripheral devices, mass
storage and so forth. While shown with this particular imple-
mentation in the embodiment of FIG. 8, the scope of the
present invention is not limited in this regard.

Referring now to FIG. 9, shown is a block diagram of a
multi-domain processor in accordance with another embodi-
ment of the present invention. As shown in the embodiment of
FIG. 9, processor 900 includes multiple domains. Specifi-
cally, a core domain 910 can include a plurality of cores
910,-910,, a graphics domain 920 can include one or more
graphics engines, and a system agent domain 950 may further
be present. In various embodiments, system agent domain
950 may remain powered on at all times to handle power
control events and power management such that domains 910
and 920 can be controlled to dynamically enter into and exit
low power states.

Note that while only shown with three domains, under-
stand the scope of the present invention is not limited in this
regard and additional domains can be present in other
embodiments. For example, multiple core domains may be
present, each including at least one core.

In general, one or more of the cores 910 may further
include a corresponding X TBA, as described herein, and low
level caches in addition to various execution units and addi-
tional processing elements. A low level cache may include a
plurality of entries and each cache entry may include a trans-
lation indicator, as described herein. In turn, the various cores
may be coupled to each other and to a shared cache memory
formed of a plurality of units of a last level cache (LLC)
940,-940, . In various embodiments, LLC 940 may be shared
amongst the cores and the graphics engine, as well as various
media processing circuitry. As seen, a ring interconnect 930
thus couples the cores together, and provides interconnection
between the cores, graphics domain 920 and system agent
circuitry 950.

In the embodiment of FIG. 9, system agent domain 950
may include display controller 952 which may provide con-
trol of and an interface to an associated display. As further
seen, system agent domain 950 may include a power control
unit 955. The system agent domain 950 may also include a
physical map cache (PM$) 956 to store a portion of transla-
tion indicator values that are stored in a physical map (Phys-
Map) of translation indicator values within a system memory.

As further seen in FIG. 9, processor 900 can further include
an integrated memory controller (IMC) 970 that can provide
for an interface to the system memory (such as a DRAM).
Multiple interfaces 980,-980,, may be present to enable inter-
connection between the processor and other circuitry. For
example, in one embodiment at least one direct media inter-
face (DMI) interface may be provided as well as one or more
Peripheral Component Interconnect Express (PCI Express™
(PCIe™)) interfaces. Still further, to provide for communica-
tions between other agents such as additional processors or
other circuitry, one or more interfaces in accordance with a
Intel® Quick Path Interconnect (QPI) protocol may also be
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provided. Although shown at this high level in the embodi-
ment of FIG. 9, understand the scope of the present invention
is not limited in this regard.

Referring to FIG. 10, an embodiment of a processor includ-
ing multiple cores is illustrated. Processor 1000 includes any
processor or processing device, such as a microprocessor, an
embedded processor, a digital signal processor (DSP), a net-
work processor, a handheld processor, an application proces-
sor, a co-processor, a system on a chip (SOC), or other device
to execute code. Processor 1000, in one embodiment,
includes at least two cores—cores 1001 and 1002, which may
include asymmetric cores or symmetric cores (the illustrated
embodiment). However, processor 1000 may include any
number of processing eclements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor typically refers to an inte-
grated circuit, which potentially includes any number of other
processing elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
anindependent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 1000, as illustrated in FIG. 10, includes
two cores, cores 1001 and 1002. Here, cores 1001 and 1002
are considered symmetric cores, i.e., cores with the same
configurations, functional units, and/or logic. In another
embodiment, core 1001 includes an out-of-order processor
core, while core 1002 includes an in-order processor core.
However, cores 1001 and 1002 may be individually selected
from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction
set architecture (ISA), a core adapted to execute a translated
ISA, a co-designed core, or other known core. Yet to further
the discussion, the functional units illustrated in core 1001 are
described in further detail below, as the units in core 1002
operate in a similar manner.

As depicted, core 1001 includes two hardware threads
10014 and 10015, which may also be referred to as hardware
thread slots 1001a and 10015. Therefore, software entities,
such as an operating system, in one embodiment potentially
view processor 1000 as four separate processors, i.e., four
logical processors or processing elements capable of execut-
ing four software threads concurrently. As alluded to above, a
first thread is associated with architecture state registers
10014, a second thread is associated with architecture state
registers 10015, a third thread may be associated with archi-
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tecture state registers 1002q, and a fourth thread may be
associated with architecture state registers 10025. Here, each
of the architecture state registers (1001a, 10015, 10024, and
10025) may be referred to as processing elements, thread
slots, or thread units, as described above. As illustrated, archi-
tecture state registers 1001a are replicated in architecture
state registers 10015, so individual architecture states/con-
texts are capable of being stored for logical processor 1001a
and logical processor 10015. In core 1001, other smaller
resources, such as instruction pointers and renaming logic in
allocator and renamer block 1030 may also be replicated for
threads 1001a and 10015. Some resources, such as re-order
buffers in reorder/retirement unit 1035, ILTB 1020, load/
store buffers, and queues may be shared through partitioning.
Other resources, such as general purpose internal registers,
page-table base register(s), low-level data-cache and data-
TLB 1015, execution unit(s) 1040, and portions of out-of-
order unit 1035 are potentially fully shared.

Processor 1000 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 10, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. For example, each core may include an XTBA
as described herein. As illustrated, core 1001 includes a sim-
plified, representative out-of-order (OOO) processor core.
But an in-order processor may be utilized in different embodi-
ments. The OOO core includes a branch target buffer 1020 to
predict branches to be executed/taken and an instruction-
translation buffer (I-TLB) 1020 to store address translation
entries for instructions.

Core 1001 further includes decode module 1025 coupled to
fetch unit 1020 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 1001a, 10015, respectively. Usually core
1001 is associated with a first ISA, which defines/specifies
instructions executable on processor 1000. Often machine
code instructions that are part of the first ISA include a portion
of the instruction (referred to as an opcode), which refer-
ences/specifies an instruction or operation to be performed.
Decode logic 1025 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by the
first ISA. For example, decoders 1025, in one embodiment,
include logic designed or adapted to recognize specific
instructions, such as transactional instruction. As a result of
the recognition by decoders 1025, the architecture or core
1001 takes specific, predefined actions to perform tasks asso-
ciated with the appropriate instruction. It is important to note
that any of the tasks, blocks, operations, and methods
described herein may be performed in response to a single or
multiple instructions; some of which may be new or old
instructions.

In one example, allocator and renamer block 1030 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 1001a and
10015 are potentially capable of out-of-order execution,
where allocator and renamer block 1030 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 1030 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 1000. Reorder/retirement unit 1035
includes components, such as the reorder buffers mentioned

10

15

20

25

30

35

40

45

50

55

60

65

12

above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 1040, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution
unit, a store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
1051 are coupled to execution unit(s) 1040, 1041. The data
cache is to store recently used/operated on elements, such as
data operands, which are potentially held in memory coher-
ency states. The D-TLB 1051 is to store recent virtual/linear
to physical address translations. As a specific example, a
processor may include a page table structure to break physical
memory into a plurality of virtual pages. Each data cache may
store a plurality of entries and each entry may include meta-
data that may include a translation indicator, as described
herein.

Here, cores 1001 and 1002 share access to higher-level or
further-out cache 1010, which is to cache recently fetched
elements. Each further out cache 1010 cache may store a
plurality of entries and each entry may include metadata that
may include a translation indicator, as described herein. Note
that higher-level or further-out refers to cache levels increas-
ing or getting further away from the execution unit(s). In one
embodiment, higher-level cache 1010 is a last-level data
cache—Ilast cache in the memory hierarchy on processor
1000—such as a second or third level data cache. However,
higher level cache 1010 is not so limited, as it may be asso-
ciated with or includes an instruction cache. A trace cache—a
type of instruction cache—instead may be coupled after
decoder 1025 to store recently decoded traces.

Inthe depicted configuration, processor 1000 also includes
bus interface module 1005. Historically, controller 1070 has
been included in a computing system external to processor
1000. In this scenario, bus interface 1005 is to communicate
with devices external to processor 1000, such as system
memory 1075, a chipset (often including a memory controller
hub to connect to memory 1075 and an I/O controller hub to
connect peripheral devices), a memory controller hub, a
physical map cache (PMS$) as described herein, a northbridge,
or other integrated circuit. And in this scenario, bus 1005 may
include any known interconnect, such as multi-drop bus, a
point-to-point interconnect, a serial interconnect, a parallel
bus, a coherent (e.g. cache coherent) bus, a layered protocol
architecture, a differential bus, and a GTL bus.

Memory 1075 may be dedicated to processor 1000 or
shared with other devices in a system. Common examples of
types of memory 1075 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 1080 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network control-
ler, or other known device.

Note however, that in the depicted embodiment, the con-
troller 1070 is illustrated as part of processor 1000. Recently,
as more logic and devices are being integrated on a single die,
such as SOC, each of these devices may be incorporated on
processor 1000. For example in one embodiment, memory
controller hub 1070 is on the same package and/or die with
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processor 1000. Here, a portion of the core (an on-core por-
tion) includes one or more controller(s) 1070 for interfacing
with other devices such as memory 1075 or a graphics device
1080. The configuration including an interconnect and con-
trollers for interfacing with such devices is often referred to as
an on-core (or un-core configuration). As an example, bus
interface 1005 includes a ring interconnect with a memory
controller for interfacing with memory 1075 and a graphics
controller for interfacing with graphics processor 1080. Yet,
in the SOC environment, even more devices, such as the
network interface, co-processors, memory 1075, graphics
processor 1080, and any other known computer devices/in-
terface may be integrated on a single die or integrated circuit
to provide small form factor with high functionality and low
power consumption.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 11, shown is a block dia-
gram of a system in accordance with an embodiment of the
present invention. As shown in FIG. 11, multiprocessor sys-
tem 1100 is a point-to-point interconnect system, and
includes a first processor 1170 and a second processor 1180
coupled via a point-to-point interconnect 1150. As shown in
FIG. 11, each of processors 1170 and 1180 may be multicore
processors, including first and second processor cores (i.e.,
processor cores 1174a and 11745 and processor cores 1184a
and 11845), although potentially many more cores may be
present in the processors. One or more of the processors may
include an XTBA, as described herein, and a respective
cache. One or more of the caches may store a plurality of
entries and each entry may include metadata that may include
a translation indicator, as described herein.

Still referring to FIG. 11, first processor 1170 further
includes a memory controller hub (MCH) 1172 and point-to-
point (P-P) interfaces 1176 and 1178. Similarly, second pro-
cessor 1180 includes a MCH 1182 and P-P interfaces 1186
and 1188. As shownin F1G. 11, MCH’s 1172 and 1182 couple
the processors to respective memories, namely a memory
1132 and a memory 1134, which may be portions of system
memory (e.g., DRAM) locally attached to the respective pro-
cessors. First processor 1170 and second processor 1180 may
be coupled to a chipset 1190 via P-P interconnects 1152 and
1154, respectively. As shown in FIG. 11, chipset 1190
includes P-P interfaces 1194 and 1198. Each processor may
have access to a physical map cache (PM$) (not shown), as
described herein.

Furthermore, chipset 1190 includes an interface 1192 to
couple chipset 1190 with a high performance graphics engine
1138, by a P-P interconnect 1139. In turn, chipset 1190 may
be coupled to a first bus 1116 via an interface 1196. As shown
in FIG. 11, various input/output (I/O) devices 1114 may be
coupled to first bus 1116, along with a bus bridge 1118 which
couples first bus 1116 to a second bus 1120. Various devices
may be coupled to second bus 1120 including, for example, a
keyboard/mouse 1122, communication devices 1126 and a
data storage unit 1128 such as a disk drive or other mass
storage device which may include code 1130, in one embodi-
ment. Further, an audio I/O 1124 may be coupled to second
bus 1120. Embodiments can be incorporated into other types
of systems including mobile devices such as a smart cellular
telephone, Ultrabook™, tablet computer, netbook, or so
forth.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
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only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

Embodiments may be used in many different types of
systems. For example, in one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present invention is not limited to a communication device,
and instead other embodiments can be directed to other types
of apparatus for processing instructions, or one or more
machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and techniques
described herein.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A processor comprising:

aprocessor core to execute a first translated instruction that

is to be translated from a first instruction stored in a first
page of a memory; and

a translation indicator agent (XTBA) comprising a cache

memory to include one or more fields, each field to store
a corresponding translation indicator to include a first
field to store a first translation indicator that is to be read
from a physical map (PhysMap) and that is to indicate
whether the first page of the memory has been modified
subsequent to translation of the first instruction.

2. The processor of claim 1, wherein the first translation
indicator to be stored in the XTBA is to be updated in
response to an indication that the first page has been modified.

3. The processor of claim 2, wherein in response to update
of the first translation indicator while the first translated
instruction is executed, the processor is to abort execution of
the first translated instruction.

4. The processor of claim 1, wherein the processor is to
update the XTBA in response to an update of the first trans-
lation indicator in the PhysMap.

5. The processor of claim 4, wherein the processor is to
monitor the first translation indicator to be stored in the Phys-
Map during a monitoring time from a start of execution of the
first translated instruction until a commit stage of the first
translated instruction.

6. The processor of claim 1, wherein each translation indi-
cator in the XTBA is associated with a corresponding page of
the memory.

7. The processor of claim 6, wherein the XTBA is to be
physically tagged to enable a snoop responsive to an update to
the PhysMap.

8. The processor of claim 7, wherein the processor core is
to update the first translation indicator stored in the XTBA in
response to an indication received via the snoop, the update to
indicate that contents of the first page have been modified
after the first instruction is translated.

9. The processor of claim 1, wherein each translation indi-
cator is to include a corresponding binary value to indicate
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whether a corresponding page of the memory has been modi-
fied after a corresponding instruction stored in the corre-
sponding page is translated.

10. The processor of claim 1, wherein upon translation of
the first instruction, the first translation indicator is to be set to
a first binary value, and upon modification of the first page
after translation of the first instruction, the first translation
indicator is to be set to a second binary value.

11. The processor of claim 1, wherein in response to an
indication from the translation indicator that the first page has
been modified subsequent to translation of the first instruc-
tion, the processor is to be interrupted from completion of
execution of the first translated instruction.

12. The processor of claim 1, further comprising a cache
coupled to the processor, wherein the cache is to include a
plurality of cache lines and at least one cache line is to store an
operand to be loaded from the first page and a corresponding
translation indicator associated with the first page, wherein
the translation indicator within the at least one cache line is
updatable in response to a change in a corresponding trans-
lation indicator within the PhysMap.

13. A processor comprising:

a processor core; and

a cache memory coupled to the processor core, the cache
memory comprising one or more entries, each entry
comprising:

a data storage field to store an operand to be loaded from
a first page of a memory, wherein the first page is to
include includes a first instruction that has been trans-
lated into a first translated instruction; and

a translation field to store a first translation indicator
associated with the first page to indicate whether the
first page has been modified after translation of the
first instruction.

14. The processor of claim 13, wherein the first translation
indicator comprises a binary value that is to indicate whether
the first page has been modified after the translation of the first
page.

15. The processor of claim 13, wherein the cache memory
is to receive an updated first translation indicator in response
to a write to the first page and the updated first translation
indicator is to cause the processor core to generate a fault in
response to detection of a store command to be executed on
the operand of the entry.

16. The processor of claim 13, wherein the cache memory
is to receive an updated first translation indicator in response
to a write to the first page and the updated first translation
indicator is to cause the processor core to invalidate the first
translated instruction.

17. A system comprising:

a system memory that includes a physical map (PhysMap)
to store a plurality of translation indicators, each trans-
lation indicator to be stored in a corresponding field of
the PhysMap, each translation indicator corresponding
to a page of the system memory and each field distinct
from the corresponding page, each translation indicator
to indicate whether the corresponding page includes an
instruction that has been translated; and
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a processor including a processor core to execute a first
translated instruction translated from a first instruction,
and a physical map cache to store a subset of the trans-
lation indicators stored in the PhysMap of the system
memory, wherein in response to execution of a write
command to the first page after translation of the first
instruction, a value of a first translation indicator in the
physical map cache is to be updated from a first value to
a second value and the processor core is to generate a
fault associated with execution of the first translated
instruction responsive to the second value of the first
translation indicator.

18. The system of claim 17, wherein the processor core is
to transfer execution control to a handler that is to invalidate
the first translated instruction.

19. The system of claim 17, wherein the processor core is
to update the value of the first translation indicator in the
PhysMap from a first binary value to a second binary value in
response to the execution of the write command to the first
page after translation of the first instruction, and to store the
second binary value of the first translation indicator in the
physical map cache.

20. A method comprising:

executing by a first core, translated first code that is trans-
lated from first code stored in a first page of a memory,
wherein the translated first code is to include a store
instruction to be directed to a second page of the
memory, the second page to store second code;

executing, by a second core, translated second code that
includes a translated second instruction that is translated
from the second code in the second page, wherein trans-
lation of a second instruction is to occur prior to execu-
tion of the translated first code; and

detecting a conflict in response to execution by the first
core of the store instruction to the second page by read-
ing a value of a translation indicator associated with the
second page, the translation indicator to be stored in a
physical map (PhysMap) of the memory that is distinct
from the first page and from the second page of the
memory.

21. The method of claim 20, further comprising generating

a fault associated with execution of the translated second
code.

22. The method of claim 20, further comprising generating
a snoop in response to detection of the conflict, the snoop to
update a translation indicator agent (XTBA) entry of an
XTBA cache of the second core, wherein an updated XTBA
entry is to indicate that the translated second instruction is
stale.

23. The method of claim 22, further comprising transfer-
ring execution control to a handler that is to invalidate the
second translated instruction in response to detection that the
XTBA entry is updated.

24. The method of claim 20, wherein the value of the
translation indicator is to be changed from a first binary value
prior to execution of the store instruction, to a second binary
value responsive to the execution of the store instruction.
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